Effectiveness of thermoelectric recuperators for rational temperatures of heat sources

Authors

  • L.I. Anatychuk 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine
  • R.V. Kuz 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine

Keywords:

термоелектричний рекуператор, відпрацьоване тепло, ККД, потужність, питома вартість

Abstract

The paper presents the results of analysis of thermoelectric recuperators of waste heat for the temperature range 100 -300ОС of the heat carrier. Based on computer model, optimization of sectional recuperators is carried out, the efficiency of each section and recuperator as a whole is calculated. The specific cost and payback time of sectional generators is calculated. Conclusions are made on the economic feasibility of using such recuperators. Bibl. 130, Fig. 9, Tabl. 1.

References

1. Rowe, M.D., Gao Min, Williams, S.G.K., Aoune A., Matsuura K., Kuznetsov V.L., Li Wen Fu. (1997). Thermoelectric recovery of waste heat-case studies. Energy Conversion Engineering Conference (1997, vol.2, 1075 – 1079).

2. Basic research needs for solar energy utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization. USA: DOE, April 18−21, 2005.

3. European Commission. Energy. Energy 2020: Roadmap 2050. –http://ec.europa.eu/energy/energy2020/roadmap/index_en.htm.

4. Paniakin V. (2010). Kogeneratsiia: Kak eto rabotaiet [Cogeneration: How it works]. Seti i biznes – Networks and Business, 4 [in Russian].

5. Waste heat recovery:technology and opportunities in U.S. industry. Report of BCS, Incorporated, USA. – 2008.

6. Cynthia Haddad, et al. (2014). Some efficient solutions to recover low and medium waste heat: competitiveness of the thermoacoustic technology. Energy Procedia, 50, 1056 – 1069.

7. Thekdi, Arvind C. (2007). Waste heat to power economic tradeoffs and considerations. Proc. of the 3rd Annual Waste Heat to Power Workshop (USA, 2007).

8. Paul Cunningham P.E. (2002). Waste heat/cogen opportunities in the cement industry. Cogeneration and Competitive Power Journal, 17 (3), 31-51.

9. Quoilinetal S. (2013). Techno-economic survey of organic Rankine cycle (ORC) systems. Renewable and Sustainable Energy Reviews, 22, 68–186.

10. Zhang C., et al. (2017). Implementation of industrial waste heat to power in Southeast Asia: an outlook from the perspective of market potentials, opportunities and success catalysts. Energy Policy, 106, 525–535.

11. Milewskia Jarosław, Krasuckib Janusz (2017). Comparison of ORC and Kalina cycles for waste heat recovery in the steel industry. Journal of Power Technologies, 97 (4), 302–307.

12. Anatychuk L.I. (1979). Termoelementy i termoelektricheskiie ustroistva: Spravochnik [Thermoelements and thermoelectric devices: Reference book]. Kyiv: Naukova dumka [in Russian].

13. Bernshteyn A.S. (1956). Termoelektricheskiie generatory [Thermoelectric generators]. Moscow: Gosenergoizdat [in Russian].

14. Anatychuk L.I. (2001). Rational areas of research and applications of thermoelectricity. J.Thermoelectricity, 1, 3 – 14.

15. Anatychuk L.I. (2007). Current state and some prospects of thermoelectricity. J.Thermoelectricity, 2, 7 – 20.

16. Freik D.M., Nykyrui L.I., Krynytskyi O.S. (2012). Dosiahnennia i problemy termoelektryky [Achievements and problems of thermoelectricity]. Fizyka i khimiia tverdoho tila - Physics and Chemistry of Solid State, 13(2), 297-318 [in Ukrainian].

17. Y. Chen, et al. (2006). A comparative study of the carbon dioxide transcritical power cycle compared with an organic Rankine cycle with R123 as working fluid in waste heat recovery. Applied Thermal Engineering. 26, 2142–2147.

18. Zhang X., Wu L., Wang X., Ju G. (2016). Comparative study of waste heat steam SRC, ORC and S-ORC power generation systems in medium-low temperature. Applied Thermal Engineering. doi: http://dx.doi.org/10.1016/j.applthermaleng.2016.06.108

19. Kishore R.A., Priya S. (2018). A review on low-grade thermal energy harvesting: materials, methods and devices. Materials, 11 (8), 1433. doi:10.3390/ma11081433.

20. Aladayleh Wail, Alahmer Ali. (2015). Recovery of exhaust waste heat for ICE using the beta type Stirling engine. Journal of Energy. Article ID 495418, https://doi.org/10.1155/2015/495418.

21. Takahashi Y., Yamamoto K., Nishikawa M. (2006). Fundamental performance of triple magnetic circuit type cylindrical thermomagnetic engine. Electrical Engineering in Japan, 154 (4).

22. Huffman F.N., Sommer A.H., Balestra C.L., Briere D.P., Oettinger P.E. (1976). High efficiency thermionic converter studies. NASA Technical Report. – NASA-CR-135125.

23. Anatychuk L.I., Prybyla A.V. (2012). Thermoelectric heat recuperator for gas turbines. ХІІІ Interstate Workshop “Thermoelectrics and their applications” (Russia, Saint-Petersburg, November 13-14, 2012).

24. Malygin N.D., Stoianov V.U. (2004). Primeneniie termoelektricheskogo generatora v istochnike bespereboinogo pitaniia povyshennoi nadezhnosti dlia osobo vazhnykh potrebitelei [The use of thermoelectric generator in high reliability uninterupted supply for critical consumers]. Stroitelstvo i tekhnogennaia bezopasnost’, 9, 153 – 156 [in Russian].

25. Shostakovskiy P. (2013). Alternativnyie istochniki elektricheskoi energii promyshlennogo primeneniia na osnove termoelektricheskikh generatorov [Alternative sources of electric energy for industrial use based on thermoelectric generators]. Control Engineering Russia, 3 (45), 52 – 56 [in Russian].

26. Anatychuk L.I., Hwang J.D., Chu H.S., Hsieh H.L. (2011). The design and application of thermoelectric generators on the waste heat recovery of heating furnace in steel industry. XIV International Forum on Thermoelectricity (May 17-20, 2011, Russian Federation, Moscow).

27. Kaibe H., Kaijihara T., Fujimoto S., Makino K., Hachiuma H. (2011) Recovery of plant waste heat by a thermoelectric generating system [S. Sano] KOMATSU technical report, 57(164), 26 – 30.

28. Kajikawa T. (2010). Thermoelectric application for power generation in Japan. Advances in Science and Technology, 74, 83-92.

29. Kajikawa T. (2011). Advances In thermoelectric power generation technology in Japan. J. of Thermoelectricity, 3 (5 – 19).

30. Kaibe H., Fujimoto S., Mizukami H., Morimoto S. (2010). Field test of thermoelectric generating system at Komatsu Plant. Proceedings of Automotive 2010, Berlin (2010.12).

31. Kaibe H., Fujimoto S., Kajihara T., Makino K., Hachiuma H. (2011). Thermoelectric generating system attached to a carburizing furnace at Komatsu Ltd., Awazu Plant. Proc of 9th European Conference on Thermoelectrics (Thessaloniki, Greece, September 2011, 201E_10_O.)

32. Kaibe H., Makino K., Kajihara K., Fujimoto S. and Hachiuma H. (2012). Thermoelectric generating system attached to a carburizing furnace at Komatsu Ltd., Awazu Plant. AIP Conf. Proc. 1449, 524; http://dx.doi.org.sci-hub.org/10.1063/1.4731609.

33. Kaibe H., Makino K., Kajihara K., Lee Y.-H. and Hachiuma H. Study of thermoelectric generation unit for radiant waste heat.

34. Kaibe H., Kajihara T., Nagano K., Makino K., Hachiuma H., Natsuume D. (2014). Power delivery from an actual thermoelectric generation system. Journal of Electronic Materials.

35. Anatychuk L.I., Hwang Jenn-Dong, Lysko V.V., Prybyla A.V. (2013). Thermoelectric heat recuperators for cement kilns. J.Thermoelectricity, 5, 39-45.

36. Kuroki T., Kabeya K., Makino K., Kajihara T., Kaibe H., Hachiuma H., Matsuno H. (2014). Thermoelectric generation using heat in steal works. Journal of Electronic Materials.

37. Amaldi A., Tang F. (2014). Proceedings of the 11th European conference on thermoelectrics : ECT 2013. Chapter 17. Waste heat recovery in steelworks using a thermoelectric generator. Springer, 143-149.

38. Hendricks T. and Choate W.T. (2006). Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat recovery (Washington, D.C.: Industrial Technologies Program, U.S. Department of Energy, 2006), 1–76.

39. Waste heat recovery: Technology and opportunities in U.S. industry.– U.S. department of energy: Industrial technologies program, 2008, 112.

40. Waste heat to power systems.– Combined heat and power partnership. U.S. environmental protection agency, 2012, 9.

41. Villar A., Arribas J. (2012). Waste-to-energy thechnologies in continuous process industries. Clean Techn Environ Policy, 14, 29-39.

42. Joshi J., Patel N. (2012). Thermoelectric system to generate electricity from waste heat of the flue gases. Advances in Applied Science Research, 3(2), 1077-1084.

43. Amaldi A., Tang F. (2014). Proceedings of the 11th European conference on thermoelectrics : ECT 2013. Chapter 26. Modeling and design of tubular thermoelectric generator used for waste heat recovery. Springer.

44. Zhang Y., D’Angelo J., Wang X.,Yang J. (2012) Multi-physics modeling of thermoelectric generators for waste heat recovery applications. (DEER Conference, Michigan).

45. Faraji A., Singh R., Mochizuki M., Akbarzadeh A. (2013). Design and numerical simulation of a symbiotic thermoelectric generation system fed by a low-grade heat sorce. Journal of Electronic Materials.

46. Brazdil M., Pospisil J. (2012). A way tox use waste heat to generate thermoelectric power. Acta Polytechnica, 52(4), 21-25.

47. Qiu K., Hayden A. (2009). A natural-gas-fired thermoelectric power generation system. Journal of Electronic Materials, 38(7).

48. Ono K., Suzuki R. (1998). Thermoelectric power generation: Converting low-grade heat into electricity. JOM, 49-51.

49. Sasaki K., Horikawa D., Goto K. (2014). Consideration of thermoelectric power generation by using hot spring thermal energy or industrial waste heat. Journal of Electronic Materials.

50. Miller E., Hendricks T., Peterson R. (2009). Modeling energy recovery using thermoelectric conversion with an organic Rankine bottomig cycle. Journal of Electronic Materials, 38(7).

51. Miller E. (2010). Integrated dual cycle energy recovery using thermoelectric conversion with an organic Rankine bottomig cycle. An abstract of the thesis for the degree of Master of Science in mechanical engineering.

52. Fleurial J.-P., Gogna P., Li, B.C-Y., Firdosy S., Chen B.J., Huang C.-K., Ravi V., Caillat T., Star K.(2009). Waste heat recovery opportunities for thermoelectric generator. Thermoelectric Applications Workshop.

53. Energy Use, Loss and Oppor tunity Analysis: U. S. Manufacturing and Mining, December 2004, Energetics, Inc., E3M, Incorporated, page 10.

54. Hachiuma H. (2013). Thermoelectric energy harvesting for industrial waste heat recovery. Energy Harvesting and Storage USA.

55. Anatychuk L.I., Jenn-Dong Hwang, Prybyla A.V. (2010). Thermoelectric generator for conversion of heat from gas rolling furnaces. 29-th International Conference on Thermoelectrics (China, Shanghai).

56. Saqr K.М., Mansour M.K., Musa M.N. (2008). Thermal design of automobile exhaust based thermoelectric generators: objectives and challenges. J.Thermoelectricity, 1, 64 – 73.

57. Anatychuk L.I., Kuz R.V. (2014). Effect of air cooling on the efficiency of sectional thermoelectric generator in a car with a diesel engine. J.Thermoelectricity, 4, 84 – 91.

58. Anatychuk L.I., Kuz R.V. (2014). Effect of air cooling on the efficiency of thermoelectric generator in a diesel-engined car. J.Thermoelectricity, 2, 61 – 69.

59. Anatychuk L.I., Kuz R.V. (2014). Effect of air cooling on the efficiency of a thermoelectric generator in a car with a petrol engine. J. Thermoelectricity, 3, 84 – 87.

60. Korzhuev M.A., Svechnikova Т.Е. (2013). Thermodynamic restrictions for the net power of automotive thermoelectric generators and prospects of their use in transport. J.Thermoelectricity, 3, 58 – 73.

61. Saqr K.M., Mansour M.K., and Musa M.N. (2008). Thermal design of automobile exhaust-based thermoelectric generators: objectivities and challenges. International J. Automotive Technology, 9(2), 155-160.

62. Rowe D.M., Smith J., Thomas G. and Min G. (2011). Weight penalty incurred in thermoelectric recovery of automobile exhaust heat. J. Electronic Materials, 40 (5), 784-788.

63. Lieb J., Neugebauer S., Eger A., Linde M., Masar B., Stűtz W. (2009). The thermoelectric generator from BMW is making use of waste heat. MTZ, 70 (4), 4-11.

64. Eger A., Linde M. (2011). The BMW Group. Roadmap for the application of thermoelectric generators (San Diego, 2011), 23 p.

65. Espinosa N., Lazard M., Aixala L., and Scherrer H. (2010). Modeling thermoelectric generator applied to diesel automotive heat recovery. JEMS 39 (9), 1446-1455.

66. Anatychuk L.I., Luste O.J., and Kuz R.V. (2011). Theoretical and experimental study of thermoelectric generators for vehicles. JEMS 40(5), 1326-1331.

67. Anatychuk L.I., Luste O.J., and Kuz R.V. (2011). Theoretical and experimental study of thermoelectric generators for vehicles. JEMS 40 (5), 1326-1331.

68. Fairbanks W. (2011). Development of automotive thermoelectric generators and air conditioner / heaters. Proceedings of XIV International Forum on Thermoelectricity (Moscow 17-20.05.2011), [On line:http://forum.inst.cv.ua/].

69. Anatychuk L.I., Kuz R.V., Rozver Yu.Yu. (2012). Thermoelectric generator for petrol engine. J.Thermoelectricity, 2, 81 – 94.

70. Fainzilber E.M., Drabkin L.M. (1966). Ispolzovaniie tepla otrabotavshikh gazov dvigatelei v termoelektricheskom generatore dlia pitaniia elementov elektrooborudovaniia avtomobilei [Use of heat from exhaust gases of engines in a thermo-electric generator for powering elements of electrical equipment of cars]. Avtomobilnaya promyshlennost, 7, 9 – 10 [in Russian].

71. Korzhuev M.A., Granatkina Yu.V. (2012). Some bottlenecks of automobile thermoelectric generators and search for new materials to eliminate them. J.Thermoelectricity, 1, 81 – 94.

72. Korzhuev M.A. (2011). On the conflict of internal combustion engines and thermoelectric generators in the recovery of heat losses in cars. Letters to JTP, 37(4), 8 – 15.

73. Anatychuk L.I., Kuz R.V., Rozver Yu.Yu. (2011). Efficiency of thermoelectric recuperators of the exhaust gas heat of internal combustion engines. J.Thermoelectricity, 4, 80-85.

74. Anatychuk L.I., Rozver Yu.Yu., Misawa K., and Suzuki N. (1997). Thermal generators for waste heat utilization. Proc. of 16th International Conference on Thermoelectrics (Dresden, 1997), p. 586 – 587.

75. Zhang X., Chau K.T., and Chan C.C. (2008). Overview of thermoelectric generation for hybrid vehicles. J. Asian Electric Vehicles, 6 (2), 1119 – 1124.

76. Elsner N., Bass J., Ghamaty S., Krommenhoek D., Kushch A., and Snowden D. (2005). Diesel truck thermoelectric generator. Advanced combustion engine technologies. FY 2005 Progress Report, p. 301 – 305.

77. Yang Jihui, Seker F., Venkatasubramanian R., Nolas G.S., Uher C., and Wang H. (2006). Developing thermoelectric technology for automotive waste heat recovery. Advanced combustion engine technologies. FY 2006 Progress Report, p. 227 – 231.

78. Ikoma K., Munekiyo M., Furuya K., Kobayashi M., Izumi T., and Shinohara K. (1998). Thermoelectric module and generator for gasoline engine vehicles. Proc. ICT’98. XVII International Conference on Thermoelectrics (Nagoya, Japan, 1998), p. 464 – 467.

79. Takanose E., Tamakoshi H. (1993). The development of thermoelectric generator for passenger car. Proc.12th International Conference on Thermoelectrics (Yokohama, Japan, 1993), p. 467 – 470.

80. Stabler F. (2002). Automotive application of hight efficiency thermoelectrics. DARPA/ONR Program rewiew and DOE hight efficiency thermoelectric workshop. (San Diego (CA), March 24-27).

81. Bass J. et al. (1992). Thermoelectric generator development for heavy-duty truck applications. Proceedings of Annual Automotive Technology Development Contractors Coordination Meeting (Dearborn (USA). – P. 743-748.

82. Bass J. et al. (1995). Performance 1 kW thermoelectric generator for diesel engines. Proc. AIP Conference, P. 295-298.

83. Thacher E. F., Helenbrook B. T., Karri M. A. and Richter C. J. (2007). Testing an automobile thermoelectric exhaust based thermoelectric generator in a light truck. Proceedings of the I MECH E Part D. Journal of Automobile Engineering, 221(1), 95-107(13).

84. Kushch A., Karri M. A., Helenbrook B. T. and Richter C. J. (2004). The effects of an exhaust thermoelectric generator of a GM Sierra pickup truck. Proceedings of Diesel Engine Emission Reduction (DEER) Conference (Coronado, California, USA).

85. Jadhao J., Thombare D. (2013). Rewiew on exhaust gas heat recovery for I.C. engine. International Journal of Engineering and Innovate Technology, 2(12), 93-100.

86. Baker C., Vuppuluri P., Shi L., Hall M. (2012). Model of heat exchangers for waste heat recovery from diesel engine exhaust for thermoelectric power generation. Journal of Electronic Materials, 41(6).

87. Kim S., Won B., Rhi S., Kim S.H., Yoo J. (2011). Thermoelectric power generation system for future hybrid vehicles using hot exhaust gas. Journal of Electronic Materials, 40(5).

88. Su C., Ye B., Guo X., Hui P. (2012). Acoustic optimization of automotive exhaust heat thermoelectric generator. Journal of Electronic Materials, 41(6).

89. Deng Y., Zhang Y., Su C. (2014). Modular analysis of automotive exhaust thermoelectric power generation system. Journal of Electronic Materials.

90. Quan R., Tang X., Quan S., Huang L. (2013). A novel optimization method for the electric topology of thermoelectric modules used in an automobile exhaust thermoelectric generator. Journal of Electronic Materials, 42(7).

91. Fleurial G.-P. (2009). Thermoelectric power generation materials: technology and application opportunities. JOM, 61(4), 79-85.

92. Kumar C., Sonthalia A., Goel R. (2011). Experimental study on waste heat recovery from an IC Engine using thermoelectric technology. Thermal Science, 15(4), 1011-1022.

93. Vázquez, J., et al., State of the art of thermoelectric generators based on heat recovered from the exhaust gases of automobiles. Proceedings of 7th European Workshop on Thermoelectrics, Paper 17 (Pamplona, Spain, 2002).

94. Wojciechowski K.T., Zybala R., Leszczynski J., Nieroda P., Schmidt M., Merkisz J., Lijewski P., Fuc P. (2012). Analysis of possibilities of waste heat recovery in off-road vehicles. AIP Conf. Proc., 1449, 501 – 504.

95. Wojciechowski K. T., Zybala R., Tomankiewicz J., Fuc P., Lijewski P., Wojciechowski J., Merkisz J. (2012). Influence of back pressure on net efficiency of TEG generator mounted in the exhaust system of a diesel engine, published in book: Thermoelectrics Goes Automotive II. Daniel Jänsch (Ed.). Expert Verlag.

96. Baskar P., Seralathan S., Dipin D., Thangavel S. (2014). Experimental analysis of thermoelectric waste heat recovery system retrofitted to two stroke petrol engine. International Journal of Advanced Mechanical Engineering, 4(1), 9-14.

97. LaGrandeur J., Crane D., Hung S. (2006). Hight-efficiency thermoelectric waste energy recovery system for passenger vehicle application. Advanced Combustion Engine Technologies. FY 2006 Progress Report, p. 232 – 236.

98. Willigan R., Hautman D., Krommenhoek D., Martin P. (2006). Cost-effective fabrication routes for the production of quantun well structures and recovery of waste heat from heavy duty trucks. Advanced Combustion Engine Technologies. FY 2006 Progress Report.

99. Nelson C. (2006). Exhaust energy recovery. Advanced Combustion Engine Technologies. FY 2006 Progress Report, p. 247 – 250.

100. Schock H., Case E., Downey A. (2006)ю Thermoelectric conversion of waste heat to electricity in an IC engine powered vehicle. Advanced Combustion Engine Technologies. FY 2006 Progress Report, p. 242 – 246.

101. Shu G., Zhao J., Tian H., Liang X., Wei H. (2012). Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123. Energy, 45, 806-816.

102. J. Merkisz, P. Fuc, P. Lijewski, A. Ziolkowski, K. Wojciechowski (2014). The analysis of exhaust gas thermal energy recovery through a TEG generator in city traffic conditions reproduced on a dynamic engine test bed. Journal of Electronic Materials.

103. Nadaf S.L., Gangavat P.B. (2014). A review on waste heat recovery and utilization from diesel engines. International Journal of Engineering and Innovate Technology, 5(4), 31-39.

104. Noor A., Puteh R., Rajoo S. (2014). Waste heat recovery technologies in turbocharged automotive engine – A Review. Journal of Modern Science and Technology, 2(1), 108-119.

105. Anatychuk. L.I., Rozver. Yu.Yu., Misawa. K., Suzuki. N. (1997). Thermal generators for waste heat utilization. Report on ICT’97.

106. Anatychuk L.I., Razinkov V.V., Rozver Yu. Yu., Mikhailovsky V.Ya.(1997). Thermoelectric generator modules and blocks. Report on ICT’97.

107. Uemura K. (2002). History of thermoelectricity development in Japan. J. of Thermoelectricity, 3, 7 – 16.

108. Ohba R. and Nakamura S. (1986). Wind tunnel experiment of gas diffusion in thermally stratified flow. Proc. 3rd Int. Workshop on Wind & Water Tunnel Modelling Atmospheric Flow & Dispersion (Lausanne, YMG-1, 1986).

109. Brazdil M., Pospil J. (2013). Thermoelectric power generation utilizing the waste heat from a biomass boiler. Journal of Electronic Materials, 42(7).

110. Characterization of the U.S. Industrial/Commercial boiler population. Oak Ridge National Laboratory, May 2005. Prepared by Energy and Enviromental Analysis, Inc.

111. Anatychuk L.I., Morozov V.I., Mitin V.P., Prybyla A.V. (2012). Thermoelectric recupirator for gas turbines. 31-th International and 10-th European Conference on Thermoelectrics (Aalborg, Denmark).

112. Date As., Date Ab., Dixon C., Akbarzadeh A. (2014). Progress of thermoelectric power generation systems: Prospect for small to medium scale power generation. Renewable and Sustainable Energy Reviews, 33, 371-381.

113. Champier D, Bedecarrats JP, Rivaletto M, Strub F. (2010). Thermoelectric power generation from biomass cook stoves. Energy, 35(2), 935–42.

114. Nuwayhid R.Y., Rowe D.M., Min G. (2003). Low cost stove-top thermoelectric generator for regions with unreliable electricity supply. Renew Energy, 28 (2), 205–22.

115. Nuwayhid RY, Shihadeh A, Ghaddar N. (2005). Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Convers Manag, 46(9–10), 1631–43.

116. Lertsatitthanakorn C. (2007). Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator. Bioresour Technol, 98(8),

1670–4.

117. Maneewan S., Chindaruksa S. (2009). Thermoelectric power generation using waste heat from a biomass drying. Journal of Electronic Materials, 38, 7.

118. Elefsiniotis A., Becker Th., Schmid U. (2013). Thermoelectric energy harvesting using phase change materials in high temperature enviroments in aircraft. Journal of Electronic Materials,

43 (6).

119. Elefsiniotis A., Kiziroglou M., Wright S., Becker Th., Yeatman E., Schmid U. (2013). Performance evaluation of a thermoelectric energy harvesting device using various change materials. Journal of Physics: Conference Series, 476.

120. Elefsiniotis A., Kokorakis N., Becker Th., Schmid U. (2014). A novel high-temperature aircraft-specific energy harvester using PCMs and state of the art TEGs. 12-th European Conference on Thermoelectrics.

121. Samson D, Kluge M., Fuss T., Becker Th., Schmid U. (2012). Flight test results of a thermoelectric energy harvester for aircraft. Journal of Electronic Materials, 41 (6).

122. Elefsiniotis A., Weiss M., Becker Th., Schmid U. (2013). Efficient power management for energy-autonomous wireless sensor nodes for aeronautical application. Journal of Electronic Materials, 42 (7).

123. Samson D, Kluge M., Otterpohl T., Becker Th., Schmid U. (2010). Aircraft-specific thermoelectric generator module. Journal of Electronic Materials, 39(9).

124. Shan Yeung (2010). Thermoelectricity: Experiments, Application and Modelling.– An abstract of the Thesis for the Degree of Master of Science in materials engineering and nanotechnology.

125. http://kryothermtec.com/ru/thermoelectric-generator-b25-12.html

126. Shostakovskii P. (2010). Termoelektricheskiie istochniki alternativnogo pitaniia [Thermoelectric sources of alternative power supply]. Novyie Tekhnologii – Novel Technologies, 12, 131-138- (2010) [in Russian].

127. Hendricks T., Yee Shannon, Leblanc S. (2016). Cost scaling of a real-world exhaust waste heat recovery thermoelectric generator: a deeper dive. Journal of Electronic Materials, 45(3).

128. Anatychuk L.I., Kuz R.V. (2011). Materials for vehicular thermoelectric generators. Proc. of ICT’2011 (Michigan, USA).

129. Anatychuk L.I., Kuz R.V., Hwang J.D. (2012). The energy and economic parameters of Bi-Te based thermoelectric generator modules for waste heat recovery. J. of Thermoelectricity, 4,

73 - 79.

130. Anatychuk L.I., Kuz R.V., Prybyla A.V. (2014). Efficiency improvement of sectional thermoelectric heat recuperators. J.Thermoelectricity, 6, 77-88.

131. https://ua.energy

How to Cite

Anatychuk, L., & Kuz, R. (2024). Effectiveness of thermoelectric recuperators for rational temperatures of heat sources. Journal of Thermoelectricity, (3), 71–92. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/56

Issue

Section

Thermoelectric products

Most read articles by the same author(s)

1 2 3 4 5 > >> 

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.