Contact resistance due to potential barrier at thermoelectric material–metal boundary
Keywords:
thermoelectric material-metal contact, potential barrier, electrical boundary resistanceAbstract
The theoretical aspects of estimating the resistance due to carriers passing through a potential barrier at the boundary between thermoelectric material and metal are considered. The temperature dependences of boundary resistivity were calculated for thermoelectric legs of Bi2Te3 based materials with the deposited anti-diffusion nickel layers. It was established that the value of boundary resistance in such legs varies with temperature from 0.5×10-7 to 2.5×10-7 Ohm×сm2. It was shown that boundary resistance can be reduced by increasing carrier concentration in the ultra-thin nickel contact layer of thermoelectric material due to doping. It was established that increasing the concentration of doping impurities in the near-contact zone by one order of magnitude with respect to its optimal value results in decreasing electrical boundary resistance by two orders. Under these conditions, the resistance value approaches minimum possible value and is 10-9 Ohm×сm2. Bibl. 35, Fig. 6, Tabl. 1.
References
Aswal D.K., Basu R., Singh A. (2016). Key issues in development of thermoelectric power generators: high figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Convers. Manag, 114, 50-67.
Anatychuk L.I., Kuz R.V. (2012). The energy and economic parameters of Bi-Te based thermoelectric generator modules for waste heat recovery. J.Thermoelectricity, 4, 75-82.
Drabkin I.A., Osvensky V.B., Sorokin A.I., Panchenko V.P., Narozhnaia О.Е. (2017). Kontaktnoie soprotivleniie v sostavnykh termoelektricheskikh vetviakh [Contact resistance in composite thermoelectric legs]. Fizika i tekhnika poluprovodnikov – Semiconductors, 51 (8), 1038-1040.
Anatychuk L.I. (2003). Termoelektrichestvo. Tom 2. Termoelektricheskiie preobrazovateli energii [Thermoelectricity. Vol.2. Thermoelectric power converters]. Kyiv, Chernivtsi: Institute of Thermoelectricity [in Russian].
Semenyuk V.A. (2006). Thermoelectric cooling of electro-optic components. Thermoelectrics Handbook: Macro to Nano. D.M. Rowe (Ed.). London, New York: CRC Taylor&Francis.
Semenyuk V. (2019). Effect of electrical contact resistance on the performance of cascade thermoelectric coolers. J. Electron. Mater, 48(4), 1870-1876.
H. Bottner, J. Nurnus, A. Schubert. (2006). Miniaturized thermoelectric converters, in: Thermoelectrics Handbook, Macro to Nano. D.M. Rowe (Ed.). London, New York: CRC Taylor&Francis.
Crane N.B., Mishra P., Murray J. L., Nolas G.S. (2009). Self-assembly for integration of microscale thermoelectric coolers. J. of Electron. Mater, 38(7), 1252-1256.
Huang I-Yu, Linb Jr-Ching, She Kun-Dian, et al. (2008). Development of low-cost micro-thermoelectric coolers utilizing MEMS technology. Sensors and Actuators, A 148, 176-185.
Navone C., Soulier M., Plissonnier M., Seiler A.L. (2010). Development of (Bi,Sb)2(Te,Se)3-based thermoelectric modules by a screen-printing process. J. of Electron. Mater, 39(9), 1755-1759.
Goncalves L.M., Couto C., Alpuim P., Correia J.H. (2008).Thermoelectric micro converters for cooling and energy-scavenging systems. J. Micromech. Microeng, 18, 064008-1 - 064008-5.
Y. Y. Zhou, J. L. Yu. (2012). Design optimization of thermoelectric cooling systems for applications in electronic devices. Int. J. Refrig, 35, 1139-1144.
Vikhor L.M., Anatychuk L.I., Gorskyi P.V. (2019). Electrical resistance of metal contact to Bi2Te3 based thermoelectric legs. J. of Appl. Phys, 126, 164503-1 – 164503-8.
Jing H., Li Y., Xu L., et al. (2015). Interfacial reaction and shear strength of SnAgCu/Ni/Bi2Te3-based TE materials during aging. Mater. Eng. and Perform, 24(12), 4844-4852.
Chen L., Mei D., Wang Y., Li Y. (2019). Ni barrier in Bi2Te3-based thermoelectric modules for reduced contact resistance and enhanced power generation properties. J. Alloys and Comp, 796, 314-320.
Chuang C.-H., Lin Y.-C., Lin C.-W. (2016). Intermetallic reactions during the solid-liquid interdiffusion bonding of Bi2Te2.55Se0.45 thermoelectric material with Cu electrodes using a Sn interlayer. Metals, 6(4), 92-97.
Iyore O. D., Lee T. H., Gupta R. P., et al. (2009). Interface characterization of nickel contacts to bulk bismuth tellurium selenide. Surf. Interface Anal, 41, 440-444.
Gupta R.P., McCarty R., Sharp J. (2014). Practical contact resistance measurement method for bulk Bi2Te3 based thermoelectric devices. J. of Electron. Mater, 43(6), 1608-1612.
Joshi G., Mitchell D., Ruedin J., et al. (2019). Pulsed-light surface annealing for low contact resistance interfaces between metal electrodes and bismuth telluride thermoelectric materials. J. Mater. Chem. C, 7, 479-484.
Gupta R. P., Xiong K., White J. B., Cho K., Alshareef H.N., Gnade B.E.(2010). Low resistance ohmic contacts to Bi2Te3 using Ni and Co metallization. J. of Electrochem. Soc, 157(6), H666-H670.
Bartkowiak M., Mahan G.D. (2001). Heat and electricity transport through interfaces, in: Recent Trends in Thermoelectric Materials, vol. II, Semiconductors and Semimetals, vol. 70. New York: Academic Press.
Da Silva L. W., Kaviany M. (2004). Microthermoelectric cooler: interfacial effects on thermal and electrical transport. Int. J. of Heat and Mass Transfer, 47(10-11), 2417–2435.
Vikhor L.M., Gorskyi P.V. (2015). Heat and charge transport at thermoelectric material-metal boundary. J. Thermoelectricity, 6, 5-15.
Bartkowiak M., Mahan G.D. (1999). Boundary effects in thin-film thermoelctrics. Proc. of Mat. Res. Soc. Symp, 545, 265-272.
Rhoderick E.H. (1978). Metal-semiconductor contacts.Oxford: Clarendon Press.
Goldberg Yu.A. (1994). Omicheskii kontakt metall-poluprovodnik АIIIBV: metody sozdaniia i svoistva [Ohmic contact metal- AIIIBV semiconductor: methods of creation and properties]. Fizika i tekhnika poluprovodnikov - Semiconductors, 28(10), 1681-1698.
Sze S.M., Ng, Kwok K. (2007). Physics of Semiconductor Devices. (3rd Ed.). Hoboken: John Wiley & Sons, Inc.
Padovani F.A., Stratton R. (1966). Field and thermionic-field emission in Schottky barriers. Sol. St. Electron, 9, 695-707.
Yu. A. Y. C. (1970). Electron tunneling and contact resistance metal-silicon contact barriers. Sol. St. Electron.13, 239-247.
Kupka R.K., Anderson W.A. (1991). Minimal ohmic contact resistance limits to n-type semiconductors. J. Appl. Phys., 69 (6), 3623-3632.
Askerov B.M. (1970). Kineticheskiie effekty v poluprovodnikakh [Kinetic effects in semiconductors]. Leningrad: Nauka.
Okhotin A.S., Yefremov А.А., Okhotin V.S., Pushkarskiy A.S. (1971). Termoelektricheskiie genetatory [Thermoelectric generators].A.R.Regel (Ed.) Moscow: Atomizdat, 1971.
Mahan G.D., Woods L.M. (1998). Multilayer thermionic refrigeration. Phys. Rev. Lett, 80(18), 4016-4019.
Taylor P.J., Maddux G.R., Meissner G., Venkatasubramanian R., et al. (2013). Controlled improvement in specific contact resistivity for thermoelectric materials by ion implantation. Appl. Phys. Lett, 103, 043902-1 - 043902-4.
Vikhor L.M., Anatychuk L.I., Gorskyi P.V. (2019). Electrical resistance of metal contact to Bi2Te3 based thermoelectric legs. J. Appl. Phys, 126, 64503-1 – 164503-8.