Computer design of a thermoelectric pulmonary air condenser with thermostating of collected condensate

Authors

  • L.I. Anatychuk 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine
  • R.R. Kobylianskyi 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine
  • V.V. Lysko 1. Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine. 2. Yuriy Fedkovych Chernivtsi National University 2 Kotsiubynskyi str., Chernivtsi, 58012, Ukraine

Keywords:

condensate, diagnostics, exhaled air, thermoelectric cooling

Abstract

A new design of a thermoelectric pulmonary air condenser is proposed, in which an additional thermostated chamber is used to collect condensed moisture. This allows maintaining the temperature of the collected condensate at a given permissible level to prevent its hypothermia and standardize the storage conditions. The physical model and computer model of the device are presented, the distribution of temperature and velocity of air movement in the condensate collection tube is determined depending on the temperatures of the working and additional chambers, as well as humidity, temperature and volume of exhaled air. The results of calculations of the cooling efficiency of thermoelectric modules, necessary to ensure the specified modes of operation of the device, are given.

References

1. Hunt John (2007). Exhaled breath condensate-an overview. Immunol Allergy Clin North Am., 27 (4), 587 – 596.

2. Hunt J. (2002). Exhaled breath condensate: An evolving tool for noninvasive evaluation of lung disease. J Allergy Clin Immunol; 110 (1): 28 – 34.

3. Horvath I., Hunt J. and Barnes P.J.(2005). Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J, 26: 523 – 548.

4. Konstantinidi Efstathia M., Lappas Andreas S, Tzortzi Anna S. and Behrakis Panagiotis K. (2015). Exhaled breath condensate: technical and diagnostic aspects.Scientific World Journal, V. 2015, Article ID 435160, 25 pages.

5. Anatychuk L.I., Kobylianskyi R.R., Lysko V.V. (2022). Computer design of a thermoelectric pulmonary air condenser for diagnostics of coronavirus and other diseases. J. Thermoelectricity, 1, 65 – 72.

6. Zamuruyev K.O., Borras E., Pettit D.R., Aksenov A.A., Simmons J.D., Weimer B.C., Schivo M., Kenyon N.J., Delplanque J.P., Davis C.E. (2018). Effect of temperature control on the metabolite content in exhaled breath condensate. Anal Chim Acta. May 2; 1006: 49 – 60. doi: 10.1016/j.aca.2017.12.025.

7. Mansour, Elias & Vishinkin, Rotem & Rihet, Stéphane & Saliba, Walaa & Fish, Falk & Sarfati, Patrice & Haick, Hossam. (2019). Measurement of temperature and relative humidity in exhaled breath. Sensors and Actuators B Chemical. 127371. 10.1016/j.snb.2019.127371.

How to Cite

Anatychuk, L., Kobylianskyi, R., & Lysko, V. (2024). Computer design of a thermoelectric pulmonary air condenser with thermostating of collected condensate. Journal of Thermoelectricity, (2), 87–96. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/93

Most read articles by the same author(s)

1 2 3 4 5 > >> 

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.