Шляхи підвищення стійкості термоелектричних модулів охолодження до дії механічних ударів

Автор(и)

  • В.В. Разіньков Інститут термоелектрики НАН та МОН України, вул. Науки, 1, Чернівці, 58029, Україна; 2 Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського 2, Чернівці, 58012, Україна
  • Р.В. Кузь Інститут термоелектрики НАН та МОН України, вул. Науки, 1, Чернівці, 58029, Україна; 2 Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського 2, Чернівці, 58012, Україна https://orcid.org/0009-0008-1719-3394
  • М.М. Кречун 1. Інститут термоелектрики НАН та МОН України, вул. Науки, 1, Чернівці, 58029, Україна; 2. Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського 2, Чернівці, 58012, Україна

DOI:

https://doi.org/10.63527/1607-8829-2024-4-40-49

Ключові слова:

термоелектричні модулі, надійність, антидифузійне покриття, ефективність, моделювання

Анотація

Показано можливість суттєвого підвищення стійкості термоелектричних модулів до дії механічних ударів. Визначено вплив бандажного антидифузійного покриття на енергетичні параметри термоелементів. Показано, що застосування термоелементів з антидифузійним покриттям бандажного типу значно підвищує стійкість термоелектричних модулів до дії механічних ударів. Бібл. 14, рис. 7.

The possibility of a significant increase in the resistance of thermoelectric modules to mechanical impacts is shown. The influence of the bandage anti-diffusion coating on the energy parameters of thermoelements has been determined. It has been shown that the use of thermoelements with an anti-diffusion bandage-type coating significantly increases the resistance of thermoelectric modules to mechanical impacts. Bibl. 14, Figs. 7.

Посилання

1. Hi-Z Technology, Inc. (n.d.) Hi-Z thermoelectric modules. Available at: http://www.hi-z.com/hz2.php.

2. Digi-Key Electronics (n.d.) Coherent Thermal Solutions. Available at: https://www.digikey.com/en/supplier-centers/coherent-thermal-solutions.

3. Krechun, M. (2019) ‘Galvanic interconnects for thermoelectric cooling modules’, Physics and Chemistry of Solid State, 20(1), 83–88. doi: 10.15330/pcss.20.1.88.

4. Zaparov S.F. and Zakharchuk T.V. (2018) Device for producing rectangular samples of thermoelectric material. J.Thermoelectricity, 5, 81–88.

5. Gong, J., Si, W. and Guan, Z. (2001) Weibull modulus of fracture strength of toughened ceramics subjected to small-scale contacts, Journal of Material Science, 36, 2391–2396.

6. Ericsson (n.d.) GR-468 Standard. Available at: https://telecom-info.njdepot.ericsson.net/site-cgi/ido/docs.cgi?DOCUMENT=GR-468&ID=SEARCH.

7. NASA (n.d.) MIL-STD-883 Standard. Available at: https://nepp.nasa.gov/docuploads/31ECBD46-FFA0-43AE-82C09A3B2B6FE26B/std883.pdf.

8. Anatychuk, L.I., Antoniuk, E.I., Luste, O.J. and Razinkov, V.V. (2008) Thermoelement, Patent of Ukraine UA81556.

9. Kuz, R.V. and Gorskyi, P.V. (2022) Analytical calculation of the effect of metal coating of thermoelectric legs on the efficiency of generator thermoelement. J. Thermoelectricity, 1, 18–27.

10. Lysko, V.V., Konstantynovych, I.A., Kuz, R.V. and Derevianko, T.V. (2024) Possibilities of reducing the specific cost of thermoelectric generator energy converters. J. Thermoelectricity, 3, 44–52.

11. COMSOL Inc. (n.d.) COMSOL Multiphysics Reference Manual. Available at: https://www.comsol.com.

12. Anatychuk, L.I., Lysko, V.V., Havryliuk, M.V. and Tiumentsev, V.A. (2018) Automation and computerization of measurements of thermoelectric parameters of materials,.J. Thermoelectricity, 3, 80–88.

13. Anatychuk, L.I., Havryliuk, M.V. and Lysko, V.V. (2015) Absolute method for measuring of thermoelectric properties of materials. Materials Today: Proceedings, 2(2), 737–743. doi: 10.1016/j.matpr.2015.05.110.

14. Lysko, V.V., Anatychuk, L.I. and Strusovskyi, K.I. (2023) Computer research on the accuracy of probe method for measuring “metal-thermoelectric material” electrical contact resistance. J.Thermoelectricity, 4, 38–48.

##submission.downloads##

Як цитувати

Разіньков, В., Кузь, Р., & Кречун, М. (2024). Шляхи підвищення стійкості термоелектричних модулів охолодження до дії механічних ударів. Термоелектрика, (4), 40–49. https://doi.org/10.63527/1607-8829-2024-4-40-49

Номер

Розділ

Надійність

Статті цього автора (авторів), які найбільше читають

1 2 > >> 

Схожі статті

1 2 3 4 5 6 7 8 9 10 > >> 

Ви також можете розпочати розширений пошук схожих статей для цієї статті.