Роль мікрокалориметричних досліджень у медицині і фармації
Ключові слова:
мікрокалориметрія, термодинаміка, фазові переходи, медицина, фармаціяАнотація
Стаття присвячена огляду деяких практичних застосувань мікрокалориметричних методів дослідження для потреб медичної і фармацевтичної науки та практики. Основним регулятором хімічних процесів – процесів обміну речовин у біологічних системах - є закони термодинаміки. Кількісним вивченням енергетичних перетворень, що відбуваються в живих організмах, структурах і клітинах, чи природи та функції хімічних процесів, що лежать в основі цих перетворень, займається біологічна термодинаміка. Мікрокалориметрія є незамінним інструментом для визначення термодинамічних параметрів системи, що необхідно як при дослідженні структури біологічної системи, так і процесів, які відбуваються в системі. Дія ліків на біологічну систему та процеси створення нових лікарських засобів також характеризуються зміною термодинамічних показників. Бібл. 43.
The article is devoted to an overview of some practical applications of microcalorimetric research methods for the needs of medical and pharmaceutical science and practice. The laws of thermodynamics are the main regulator of chemical processes, i.e. the processes of metabolism in biological systems. Biological thermodynamics deals with the quantitative study of the energy transformations occurring in living organisms, structures and cells, or the nature and function of the chemical processes underlying these transformations. Microcalorimetry is an indispensable tool for determining the thermodynamic parameters of a system, which is necessary both in the study of the structure of the biological system and the processes occurring in the system. The effects of drugs on the biological system and the processes of creating new drugs are also characterized by changes in thermodynamic parameters. Bibl. 43.
Посилання
L.I. Anatychuk (1979). Termoelementy i termoelektricheskiie ustroistva [Thermoelements and thermoelectric devices]. Kyiv: Naukova dumka [in Russian].
L.I. Anatychuk, O.J. Luste (1981). Mikrokalorimetriia [Microcalorimetry]. Lviv, Vyshcha shkola [in Russian].
J.A. Zimmerman (2020). Laws of thermodynamics. ThoughtCo, thoughtco.com/laws-of-thermodynamics-p3-2699420.
Application of thermodynamics to biological and materials science (2011) T. Mizutani (Ed). Published by InTech.
L.I. Hryhorieva, Yu.A. Tomilin (2011) Osnovy biofizyky i biomekhaniky [Fundamentals of biophysics and biomechanics]. Mykolaiv: ChDU im. Petra Mohyly [in Russian].
V.S. Antoniuk, M.O. Bondarenko, V.A. Vashchenko, H.V. Kanashevych, H.S. Tymchuk,
I.V. Yatsenko (2012) Biofizyka i biomekhanika: pidruchnyk [Biophysics and biomechanics: Textbook]. Kyiv: NTUU «KPI» [in Ukranian].
Anatychuk L.I., Luste O.J., Kobylianskyi R.R. (2017) Information-energy theory of medical purpose thermoelectric temperature and heat flux sensors. J.Thermoelectricity, 3, 5-20.
N.C. Garbett., J.B. Chaires (2012) Thermodynamic studies for drug design and screening. Expert Opin Drug Discov, 7(4): 299–314.
J. Udgaonkar (2001) Entropy in biology. Resonance, 6(9), 61-66.
M. Sacchetti (2014) Thermodynamics of water–solid interactions in crystalline and amorphous pharmaceutical materials. Journal of Pharmaceutical Sciences, 103(9), 2772-2783.
N.F. Zolkiflee, M.M.R Meor Mohd Affandi, A.B.A Majeed. (2020) Thermodynamics and solute-solvent interactions of lovastatin in an aqueous arginine solution. European Journal of Pharmaceutical Sciences, 141(1), 105111.
Maksay G. (2011) Allostery in pharmacology: thermodynamics, evolution and design. Prog Biophys Mol Biol., 106(3), 463-73.
S.P. Mitra (2009) Drug-receptor Interaction: pharmacology, binding and thermodynamics – A Review. Journal of Surface Science and Technology, 25(3-4), 103-152.
J.C Chimal., N. Sаnchez, P.R. Ramírez (2017). Thermodynamic optimality criteria for biological systems in linear irreversible thermodynamics. J. Phys.: Conf. Ser, 792, 012082.
G.B. West, W.H. Woodruff, J.H. Brown (2002) Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. PNAS, 99, 2473–2478.
M. Monti (1990). Application of microcalorimetry to the study of living cells in the medical field. Thermochimica Acta, 172, 53–60.
C. Murigande, S. Regenass, D. Wirz, A.U. Daniels, A. Tyndall (2009).A comparison between (3H)-thymidine incorporation and isothermal microcalorimetry for the assessment of antigen-induced lymphocyte proliferation. Immunological Investigations, 38 (1), 67–75.
R. Santoro, O. Braissant, B. Müller, D. Wirz, A.U. Daniels, I. Martin, D. Wendt (2011). Real-time measurements of human chondrocyte heat production during in vitro proliferation. Biotechnology and Bioengineering, 108 (12), 3019–3024.
A. Doostmohammadi, A. Monshi, M.H. Fathi, S. Karbasi, O. Braissant, A.U. Daniels (2011) Direct cytotoxicity evaluation of 63S bioactive glass and bone-derived hydroxyapatite particles using yeast model and human chondrocyte cells by microcalorimetry. Journal of Materials Science: Materials in Medicine, 22 (10), 2293–2300.
Z. Heng, Z. Congyi, W. Cunxin, W. Jibin, G. Chaojiang, L. Jie, L. Yuwen (2005). Microcalorimetric study of virus infection; The effects of hyperthermia and 1b recombinant homo interferon on the infection process of BHK-21 cells by foot and mouth disease virus. Journal of Thermal Analysis and Calorimetry, 79 (1), 45–50..
O.A. Antoce, V. Antocie, K. Takahashi, N. Pomohaci, I. Namolosanu (1997) Calorimetric determination of the inhibitory effect of C1-C4 n-alcohols on growth of some yeast species". Thermochimica Acta, 297 (1–2), 33–42.
Braissant O., Wirz D., Gopfert B., Daniels A. U. (2010) Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol. Lett, 303 (1), 1–8.
Y. Shi, L. Liu, W. Shao, T. Wei, G. Lin (2015) Microcalorimetry studies of the antimicrobial actions of Aconitum alkaloids J. Zhejiang Univ Sci B., 16(8), 690–695.
C. Fricke, H. Harms, T. Maskow (2019) Rapid calorimetric detection of bacterial contamination: influence of the cultivation technique. Front Microbiol, 10, 2530.
O. Braissant, G. Theron, S.O. Friedrich, A.H. Diacon, G. Bonkat (2020). Comparison of isothermal microcalorimetry and BACTEC MGIT960 for the detection of the metabolic activity of Mycobacterium tuberculosis in sputum samples. J Appl Microbiol. doi:10.1111/jam.14549.
M. Butini, G. Abbandonato, C. Di Rienzo, A. Trampuz, M. Di_luca (2019). Isothermal microcalorimetry detects the presence of persister cells in a Staphylococcus aureus biofilm after vancomycin treatment. Front. Microbiol. 10, 332.
M. Di Luca, A. Koliszak, S. Karbysheva, A. Chowdhary, J.F. Meis, A. Trampuz (2019). Thermogenic characterization and antifungal susceptibility of candida auris by microcalorimetry. J. Fungi. 5(4):103.
J. Nykyri, A.M. Herrmann, S. Håkansson (2019). Isothermal microcalorimetry for thermal viable count of microorganisms in pure cultures and stabilized formulations. BMC Microbiol.19, 65, 10.
S. Costa-de-Oliveira, A.G. Rodrigues (2020) Candida albicans antifungal resistance and tolerance in bloodstream infections: The triad yeast-host-antifungal. Microorganisms, 8(2), 154.
E. M. Maiolo, U. F. Tafin, O. Borens, A. Trampuz (2014)Activities of Fluconazole, Caspofungin, Anidulafungin, and Amphotericin B on Planktonic and Biofilm Candida Species Determined by Microcalorimetry. Antimicrobial Agents and Chemotherapy, 58(5), 2709–2717.
Z. Xu, H. Li, X. Qin, T. Wang, J. Hao, J. Zhao, J. Wang, R. Wang, D. Wang, S. Wei, H. Cai,
Y. Zhao (2019). Antibacterial evaluation of plants extracts against ampicillin-resistant Escherichia coli (E. coli) by microcalorimetry and principal component analysis. AMB Expr, 9,101.
O. Braissant, J. Keiser, I. Meister, A. Bachmann, D. Wirz, B. Göpfert, G. Bonkat, I. Wadsö (2015). Isothermal microcalorimetry accurately detects bacteria, tumorous microtissues, and parasitic worms in a label-free well-plate assay. Biotechnol J., 10(3), 460–468.
Applications of calorimetry in a wide context – differential scanning calorimetry, isothermal titration calorimetry and microcalorimetry (2013). Amal Ali Elkordy (Ed.). InTech.
M.S. Atria, A.A. Sabouryb, F. Ahmad (2015). Biological applications of isothermal titration Calorimetry. Phys. Chem. Res., 3(4), 319-330.
O. Callies, A. Hernández Daranas (2016). Application of isothermal titration calorimetry as a tool to study natural product interactions. Nat. Prod. Rep, 33, 881-904.
A-M. Totea, J. Sabin, I. Dorin, K. Hemming, P. Laity, B. Conway, L. Waters, K. Asare-Addo (2019). Thermodynamics of clay – Drug complex dispersions: Isothermal titration calorimetry and high-performance liquid chromatography. Journal of Pharmaceutical Analysis. https://doi.org/10.1016/j.jpha.2019.12.001
H. Su, Y. Xu (2018). Application of ITC-based characterization of thermodynamic and kinetic association of ligands with proteins in drug design. Front. Pharmacol, 9, 1133.
A. Schön, R.K. Brown, B.M. Hutchins, E. Freire (2013). Ligand binding analysis and screening by chemical denaturation shift Analytical Biochemistry, 443 (1), 52–7.
M.H. Сhiu, E.J. Prenner (2011). Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions Journal of Pharmacy & Bioallied Sciences. 3 (1), 39–59.
M.A. Kalam, S. Alshehri, A. Alshamsan, M. Alkholief, R. Ali, F. Shakeel (2019). Solubility measurement, Hansen solubility parameters and solution thermodynamics of gemfibrozil in different pharmaceutically used solvents. Drug Dev Ind Pharm, 45(8), 1258-1264.
K. Lohner, E. J. Prenner (2000). Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems Biochimica et Biophysica Acta (BBA), 1462 (1–2), 141-56.
Y. Pang, A. Buanz, R. Telford, O.V. Magdysyuk, S. Gaisforda, Ga.R. Williamsa (2019). A simultaneous X-ray diffraction–differential scanning calorimetry study into the phase transitions of mefenamic acid. Journal of Applied Crystallography, 52(6), 1264-1270.
R.L. Roque-Flores, J.R. Matos (2019). Simultaneous measurements of X-ray diffraction–differential scanning calorimetry. J Therm Anal Calorim, 137, 1347–1358.