Computer design of permeable functionally graded materials for thermoelements in electric energy generation mode

Authors

  • R.G. Cherkez 1Institute of Thermoelectricity of the NAS and MES of Ukraine, 1 Nauky str., Chernivtsi, 58029, Ukraine; 2 Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskyi str., Chernivtsi, 58000, Ukraine
  • О.М. Porubanyi Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskyi str., Chernivtsi, 58000, Ukraine
  • A.S. Zhukova Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskyi str., Chernivtsi, 58000, Ukraine
  • M.O. Dubinin Podilskyi State University, 13 Shevchenko str., Kamianets-Podilskyi, 32316, Ukraine
  • N.V. Panasiuk Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskyi str., Chernivtsi, 58000, Ukraine

Keywords:

computer design, permeable structures

Abstract

Based on the Pontryagin maximum principle of optimal control theory, a methodology for designing optimal functionally graded materials (FGM) for permeable thermoelectric elements is presented. An algorithm and a computer program have been created, which have been tested for finding the optimal FGM for n- and p-type legs based on Bi-Te-Se-Sb. It has been shown that under optimal conditions, 1.3-1.7 fold efficiency increase is achieved when using permeable generator thermoelements with FGM compared to traditional thermoelements with homogeneous legs.

References

1. Anatychuk L. I., Vikhor L.N. (1996). Computer design of thermoelectric functionally graded materials. Proceedings of the Fourth International Symposium on FGM, Tsukuba, Japan, Oct. 21-24, 1996.

2. Anatychuk L. I., Vikhor L.N., Cherkez R.G. (1997). Computer simulation of functionally graded materials for thermoelectricity. J. Thermoelectricity, 3,43-61.

3. Patent 6673996 B2 USA InCl Н 01 L 35/34 Thermoelectric unicouple used for power generation. Caillat T., Zoltan A., Zoltan, L., Snyder J. (USA); California Institute of Technology. N 10/138040; Filed 01.05.2002; Publ. 06.01.2004. – 7 p.

4. Patent 6673996 B2 USA InCl Н 01 L 35/34 Thermoelectric unicouple used for power generation. Caillat T., Zoltan A., Zoltan, L., Snyder J. (USA); California Institute of Technology. N 10/138040; Filed 01.05.2002; Publ. 06.01.2004. – 7 p.

5. Calliat T., Fleurial J.-P., Snyder G.J., Zoltan A., Zoltan D. (1999). Proc. of the XVIIIth International Conf. on Thermoelectrics (USA, 1999), p. 473.

6. El-Genk Mohamed S.and Saber Hamed H. (2003). Energy Conversion and Management, 44(7), 1069 (2003); https://doi.org/10.1016/S0196-8904(02)00109-7.

7. Method for improvement of thermoelectric generator efficiency. USSR Certificate of Authorship №162578 / I.V. Zorin, Filed 02.05.1968.

8. Anatychuk L.I., Cherkez R.G. (2003). Permeable thermoelement in generation electric energy mode. J.Thermoelectricity, 2, 36.

9. Anatychuk L.I., Luste O.J., Mikhailovsky V.Ya. (2005). Thermoelectric generators for automobiles. J.Thermoelectricity 4, 21.

10. Anatychuk L.I., Cherkez R.G. (2010). Permeable segmented thermoelement in generation mode. J.Thermoelectricity, 3, 5.

11. Pontryagin L.S., Boltyansky V.G., Gamkrelidze R.V., Mischenko E.F. (1976). Matematicheskaia Teoriia Optimalnykh Protsessov[Mathematical Theory of Optimal Processes]. Moscow: Nauka [in Russian].

12. Anatychuk L.I., Vikhor L.N. (2009). Energy Conversion and Management, 50(9), 2366. https://doi.org/10.1016/j.enconman.2009.05.020.

How to Cite

Cherkez, R., Porubanyi О., Zhukova, A., Dubinin, M., & Panasiuk, N. (2024). Computer design of permeable functionally graded materials for thermoelements in electric energy generation mode. Journal of Thermoelectricity, (3), 24–32. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/140

Issue

Section

Materials research

Most read articles by the same author(s)

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.