Thermoelectric composites with different percolation thresholds

Authors

  • V. Fedotov National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Peremohy Prosp., Kyiv, 03056, Ukraine
  • А. Snarskii National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Peremohy Prosp., Kyiv, 03056, Ukraine

Keywords:

thermoelectric composites, kinetic coefficients

Abstract

A modification of the mean-field approximation is considered for describing the behaviour of effective kinetic coefficients, including for thermoelectric  composites. The proposed modification makes it possible to describe randomly heterogeneous media with different percolation thresholds at arbitrary values of local kinetic coefficients.

References

Torquato S. (2002). Random heterogeneous materials. Microstructure and macroscopic properties. Springer Verlag: New York, USA, doi: 10.1115/1.1483342

Balagurov B. Ya. (2015). Electrophysical properties of composites. Moscow: Lenand.

Choy T. C. (2016). Effective medium theory: principles and applications, Oxford University Press: Oxford, UK, doi: 10.1093/acprof:oso/9780198705093.001.0001

Snarskii A., Bezsudnov IV, Sevryukov VA, Morozovskiy A., Malinsky J. (2016). Transport processes in macroscopically disordered media. From mean field theory to percolation. Springer Verlag: New York, USA, doi: 10.1007/978-1-4419-8291-9.

Bruggeman V. D. (1935). Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys . (Leipzig), 16, 664. doi: 10.1002/andp.19354160705

Landauer R. (1952). The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 784. doi:10.1063/1.1702301.

Sarychev A. K., Vinogradov A. P. (1863). Effective medium theory for the magnetoconductivity tensor of disordered material. phys. stat. sol. (b), 117 , K113-K118. doi: 10.1002/pssb.2221170252

Snarskii A., Zorinets D., Shamonin M., Kalita V. (2019). Theoretical method for calculation of effective properties of composite materials with reconfigurable microstructure: electric and magnetic phenomena. Phys. A: Stat. Mech. Appl. 535 , 122467. doi: 10.1016/j.physa.2019.122467

Snarskii A., Shamonin M., Yuskevich P. (2020). Colossal magnetoelastic effects in magnetoactive elastomers. arxiv: 2002.11762, 2020.

Snarskii A., Shamonin M., Yuskevich P. (2020). Effective medium theory for elastic properties of composite materials with various percolation thresholds. Materials, 13, 1243.

Snarskii A., Yuskevich P. (2019). Effective medium theory for the thermoelectric properties of composite materials with various percolation thresholds. J.Thermoelectricity, 3, 40.

Lee S., Hippalgaonkar K., Yang F., Hong J., Ko C., Suh J., Liu K., Wang K., Urban JJ, Zhang X., Dames C., Hartnoll SA, Delaire O., Wu J. (2017). Science, 355, 371.

Budiansky, B. (1965). On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids, 13, 223-227. doi: 10.1016/0022-5096(65)90011-6

Shermergor T. D. (1977). Theory of elasticity of microinhomogeneous media. Moscow: Nauka.

Rowe D. M (2006). Thermoelectrics Handbook (macro to nano), Taylor Francis, 1000.

M.-L. Huang, Y.-D. Shi, M. Wang. (2022). A comparative study on nanoparticle network-dependent electrical conductivity, electromagnetic wave shielding effectiveness and rheological properties in multiwall carbon nanotubes filled polymer nanocomposites, Polym. Compos. 1. https://doi.org/10.1002/pc.2716

How to Cite

Fedotov, V., & Snarskii А. (2024). Thermoelectric composites with different percolation thresholds. Journal of Thermoelectricity, (1), 5–17. Retrieved from http://jte.ite.cv.ua/index.php/jt/article/view/15

Issue

Section

Materials research

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.