Вимірювання електричного контактного опору структури «метал – термоелектричний матеріал» з використанням ефекту Пельтьє
Ключові слова:
електричний контактний опір, вимірювання, ефект Пельтьє, термоелектричні перетворювачі енергіїАнотація
У роботі описано методику визначення контактного опору «метал – термоелектричний матеріал» з використанням компенсації охолоджуючої дії ефекту Пельтьє, що виникає при проходженні постійного електричного струму через контакт двох різнорідних матеріалів, теплом Джоуля, що виділяється на контактному опорі. Наведено фізичну модель такого процесу та результати комп’ютерного моделювання, що підтверджують можливість його реалізації на практиці.
The paper describes a method for determining the contact resistance of a “metal – thermoelectric material” using compensation for the cooling action of the Peltier effect, which occurs when a direct electric current passes through the contact of two dissimilar materials, by Joule heat released at the contact resistance. A physical model of such a process and the results of computer simulation are presented, confirming the possibility of its implementation in practice.
Посилання
1. T. Tritt. (2000). Recent Trends in Thermoelectric Materials Research, Part Two (Semiconductors and Semimetals, Volume 70). Academic Press, 320 p. ISBN-13: 978-0127521794.
2. D.M. Rowe. Thermoelectrics Handbook: Macro to Nano (1st ed.). CRC Press, 2006. https://doi.org/10.1201/9781420038903.
3. Rowe D.M. (Ed.). (2012). Modules, Systems, and Applications in Thermoelectrics (1st ed.). CRC Press. https://doi.org/10.1201/b11892.
4. Kania T., Schilder B., Kissel T. et al. (2013). Development of a Miniaturized Energy Converter Without Moving Parts. Flow Turbulence Combust 90, 741 – 761. https://doi.org/10.1007/s10494-012-9418-8
5. C. Yuan, D. Hohlfeld, T. Bechtold. (2021). Design optimization of a miniaturized thermoelectric generator via parametric model order reduction. Microelectronics Reliability. Volume 119, 114075, ISSN 0026-2714, https://doi.org/10.1016/j.microrel.2021.114075.
6. J. Vondrak, M. Schmidt, A. Proto, M. Penhaker, J. Jargus and L. Peter. (2019). "Using Miniature Thermoelectric Generators for Wearable Energy Harvesting," 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, pp. 1 – 6, doi: 10.23919/SpliTech.2019.8782997.
7. Gustavo G. Dalkiranis, João H.C. Bocchi, Osvaldo N. Oliveira Jr., and Gregório C. Faria. (2023). ACS Omega, 8 (10), 9364 – 9370 DOI: 10.1021/acsomega.2c07916.
8. Li J., Ma B., Wang R., Han L. (2011). Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs. Microelectron. Reliab, 51, 2210 – 2215.
9. Shen L., Chen H., Xiao F., Yang Y., Wang S. (2014). The step-change cooling performance of miniature thermoelectric module for pulse laser. Energy Convers. Manag, 80, 9 – 45.
10. Zhang W., Shen L., Yang Y., Chen H. (2015). Thermal management for a micro semiconductor laser based on thermoelectric cooling. Appl. Therm. Eng. 90, 664 – 673.
11. Piotrowski A., Piotrowski J., Gawron W., Pawluczyk J., Pedzinska M. (2009). Extension of usable spectral range of Peltier cooled photodetectors. Acta Phys. Pol. A, 116, 52 – 55.
12. L.M. Vikhor, L.I. Anatychuk, and P.V. Gorskyi (2019). Electrical resistance of metal contact to Bi2Te3 based thermoelectric legs. Journal of Applied Physics, 126, 164503-1 – 164503-8.
13. Anatychuk L.I., Vikhor L.M., Mitskaniuk N.V. (2019). Contact resistance due to potential barrier at thermoelectric material – metal boundary. Journal of Thermoelectricity, 4, 74 – 88.
14. Vikhor L., Kotsur M. (2023). Evaluation of Efficiency for Miniscale Thermoelectric Converter under the Influence of Electrical and Thermal Resistance of Contacts. Energies, 16, 4082-1 – 22. https://doi.org/10.3390/en16104082.
15. Vikhor L.M., Gorskyi P.V., Lysko V.V. (2022). Methods for measuring contact resistances of “metal – thermoelectric material” structures (part 1). Journal of Thermoelectricity, 2, 5 – 24.
16. Vikhor L.M., Gorskyi P.V., Lysko V.V. Methods for measuring contact resistances of “metal – thermoelectric material” structures (part 2). Journal of Thermoelectricity. 2022. No. 3-4. P. 5-17.
17. Anatychuk L.I., Lysko V.V., Strusovskyi K.I. Computer research on the accuracy of probe method for measuring the electrical contact resistance of “metal – thermoelectric material”. Journal of Thermoelectricity. 2023. No. 4. P. 38-48.
18. Anatychuk L. I., Havryliuk M. V., Lysko V. V. Absolute Method for Measuring of Thermoelectric Properties of Materials. Materials Today: Proceedings. 2015. Vol. 2, no. 2. P. 737–743. https://doi.org/10.1016/j.matpr.2015.05.110.
19. Anatychuk L.I., Lysko V.V. On Improvement of the Accuracy and Speed in the Process of Measuring Characteristics of Thermoelectric Materials. Journal of Electronic Materials. 2014. Vol. 43, No. 10. P. 3863–3869. https://doi.org/10.1007/s11664-014-3300-5.
20. Anatychuk L.I., Lysko V.V. Investigation of the effect of radiation on the precision of thermal conductivity measurement by the absolute method. Journal of Thermoelectricity. 2012. No. 1. pp. 65–73.
21. Anatychuk L.I., Lysko V.V. Modified Harman's method. (2012) AIP Conference Proceedings, 1449, pp. 373 – 376. DOI: 10.1063/1.4731574.
22. Anatychuk L.I., Havrylyuk N.V., Lysko V.V. Methods and equipment for quality control of thermoelectric materials. (2012) Journal of Electronic Materials, 41 (6), pp. 1680 – 1685. DOI: 10.1007/s11664-012-1973-1.
23. Anatychuk L.I., Lysko V.V. Determination of the temperature dependences of thermoelectric parameters of materials used in generator thermoelectric modules with a rise in temperature difference. Journal of Thermoelectricity, 2021 (2), pp. 71 – 78.
24. Anatychuk L.I., Lysko V.V. Method for determining the thermoelectric parameters of materials forming part of thermoelectric cooling modules. Journal of Thermoelectricity, 2021 (3), pp. 71 – 82.
25. Anatychuk L.I., Kobylianskyi R.R., Konstantinovich I.A., Lys'ko V.V., Puhantseva O.V., Rozver Y., Tiumentsev V.A. Calibration bench for thermoelectric converters of heat flux. (2016) Journal of Thermoelectricity, (5), pp. 65 – 72.
26. Anatychuk L.I., Lysko V.V., Havryliuk M.V. Ways for quality improvement in the measurement of thermoelectric material properties by the absolute method. Journal of Thermoelectricity, 2018 (2), pp. 90 – 100.
27. Anatychuk L.I., Lysko V.V., Havryliuk M.V., Tiumentsev V.A. Automation and computerization of measurements of thermoelectric parameters of materials. Journal of Thermoelectricity, 2018 (3), pp. 80 – 88.
28. COMSOL Multiphysics, v. 6.0. www.comsol.com. COMSOL AB, Stockholm, Sweden. 2021.
29. Kenneth H. Huebner, Donald L. Dewhirst, Douglas E. Smith, Ted G. Byrom. (2001). The Finite Element Method for Engineers, 4th Edition. ISBN: 978-0-471-37078-9. Wiley-Interscience. 744 p.
30. J.N. Reddy (2005). An Introduction to the Finite Element Method. 3rd Edition (McGraw-Hill Mechanical Engineering). 784 p.