Проєктування портативного універсального термоелектричного генератора
Ключові слова:
джерело тепла та електрики, термоелектричний генератор, фізична модель, ефективність, джерело теплаАнотація
Наведено фізичну та математичну моделі портативного універсального термоелектричного генератора, призначеного для живлення малопотужної апаратури, систем мобільного та спеціального зв’язку, зарядки акумуляторів та освітлення, забезпечення мінімальною електричною енергією цивільного населення в місцях, де зруйнована енергетична інфраструктура, а також у неелектрифікованих районах. Розглянуто рішення спрощених задач теплообміну в одношарових та багатошарових структурах в стаціонарних та нестаціонарних умовах. Створено комп’ютерну модель для проєктування конструкції портативного універсального термоелектричного генератора, а також оптимізації термоелектричного матеріалу, з якого його виготовлено, для різних режимів експлуатації. Бібл. 12, рис. 7.
A physical and mathematical model of a portable universal thermoelectric generator designed to power low-power equipment, mobile and special communication systems, charge accumulators and lighting, and provide the civilian population in places where the energy infrastructure is destroyed, as well as in non-electrified areas, with minimal electrical energy is presented. The solution to simplified heat transfer problems in single-layer and multilayer structures in stationary and non-stationary conditions is considered. A computer model has been elaborated for developing the design of a portable universal thermoelectric generator, together with optimizing the thermoelectric material from which it is made, for various operating modes. Bibliography 17, Fig. 7.
Посилання
1. Pat. CN216524233U. Thermoelectric water kettle water level detection circuit. Published 13.05.2022.
2. Pat. CN105167597B. A kind of thermo-electric generation hot-water bottle. Published 02.01.2018.
3. Pat. CN209391675U. A kind of heating vessel. Published. 17.09.2019.
4. Pat. CN208806757U. Thermo-electric generation wild cooker. Published. 30.04.2019.
5. Pat. GB2605345A. Cooking vessel. Published 28.09.2022.
6. Anatychuk L.I., Lysko V.V., Prybyla A.V. (2022). Rational areas of using thermoelectric heat recuperators. Journal of Thermoelectricity, 3-4, 43 – 67.
7. Montecucco A. & Siviter J. & Knox A.R. (2017). Combined heat and power system for stoves with thermoelectric generators. Applied Energy, Elsevier, 185(P2), 1336 – 1342. DOI: 10.1016/j.apenergy.2015.10.132.
8. Żołądek Maciej, Papis Karolina, Kuś Jakub, Zając Michal, Figaj Rafal and Rudykh Kyrylo (2020). The use of thermoelectric generators with home stoves. E3S Web Conf., 173 (2020) 03005. DOI: https://doi.org/10.1051/e3sconf/202017303005.
9. Wood stove thermoelectric generator rabbit ears. Retrieved from: https://thermoelectric-generator.com/product/wood-stove-thermoelectric-generator-rabbit-ears/.
10. 45-watt teg generator for wood stoves with air-cooling. Retrieved from: https://www.tegmart.com/thermoelectric-generators/wood-stove-air-cooled-45w-teg.
11. Thermoelectric power generator for fireplace heater. Retrieved from: http://www.thermonamic.com/pro_view.asp?id=828.
12. COMSOL Multiphysics, v. 6.0. www.comsol.com. COMSOL AB, Stockholm, Sweden. 2021.
13. Anatychuk L.I., Lysko V.V. (2021). Determination of the temperature dependences of thermoelectric parameters of materials used in generator thermoelectric modules with a rise in temperature difference. Journal of Thermoelectricity, 2, 71 – 78.
14. Anatychuk L.I., Kobylianskyi R.R., Konstantinovich I.A., Lys'ko V.V., Puhantseva O.V., Rozver Y., Tiumentsev V.A. (2016). Calibration bench for thermoelectric converters of heat flux. Journal of Thermoelectricity, 5, 65 – 72.
15. Anatychuk L.I., Havryliuk M.V., Lysko V.V. (2021). Automation and computerization of processes of measuring thermoelectric parameters of materials forming part of generator and cooling thermoelectric modules. Journal of Thermoelectricity, 3, 60 – 70.
16. Havryliuk M.V., Lysko V.V., Rusnak O.S. (2022). Experimental studies of thermoelectric parameters of materials forming part of thermoelectric modules. Journal of Thermoelectricity, 2, 24 – 32.
17. Mykhailovsky V.Y., Lysko V.V., Antoniuk V.V., Maksymuk M.V. (2017). Research on thermoelements based on n-PbTe and р-TaGS materials for thermoelectric generator cascade module. Journal of Thermoelectricity, (3), 36 – 44.